1. United Nations Environment Programme, “Spreading Like Wildfire-The Rising Threat of Extraordinary Landscape Fires”, A UNEP Rapid Response Assessment, (2022).
2. K. McGrattan, S. Hostikka, J. Floyd, R. McDermott, M. Vanella and E. Mueller, “Fire Dynamics Simulator-User's Guide”, NIST SP 1019, (2020).
3. S. C. Kim, “Preprocessing Method of 3D Topographic Modeling for Wildland Fire Simulation”, Fire Science and Engineering, Vol. 36, No. 4, pp. 14-19 (2022),
https://doi.org/10.7731/KIFSE.43aee5d9.
4. M. Vanella, K. McGreattan, R. McDermott, G. Forney, W. Mell, E. Gissi and P. Fiorucci, “A Multi-Fidelity Framework for Wildland Fire Behavior Simulations over Complex Terrain”, Atmosphere, Vol. 12, No. 2, pp. 273(2021),
https://doi.org/10.3390/atmos12020273.
6. E. Rodriguez, C. S. Morris, J. E. Belz, E. C. Chapin, J. M. Martin, W. Daffer and S. Hensley, “An Assessment of the SRTM Topographic Products”, Technical Report JPL D-31639, Jet Propulsion Laboratory, CA, (2005).
7. A. Bova, W. Mell and C. M. Hoffman, “A Comparison of Level Set and Marker Methods for the Simulation of Wildland Fire Front Propagation”, International Journal of Wildland Fire, Vol. 25, No. 2, pp. 229-241 (2016),
https://doi.org/10.1071/WF13178.
8. R. G. Rehm and R. J. McDermott, “Mathematical Modeling of Wildland-Urban Interface Fires”, NISTIR 7803, (2011).
9. R. C. Rothermel, “A Mathmatical Model for Predicting Fire Spread in Wildland Fuels”, Research Paper INT-115, Intermountain Forest and Range Experiment Station, USDA Forest Service, (1972).
10. F. Albini, “Estimating Wildfire Behavior and Effects”, Research Paper INT-30, Intermountain Forest and Range Experiment Station, USDA Forest Service, (1976).
11. I. T. Leventon, J. Yang and M. C. Bruns, “Thermal Decomposition of Vegetative Fuels and the Impact of Measured Variations on Simulations of Wildfire Spread”, Fire Safety Journal, Vol. 137, (2023),
https://doi.org/10.1016/j.firesaf.2023.103762.